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Abstract

An experimental investigation into the flow coef-
ficient behavior for nine boundary layer bleed orifice

configurations is reported. This test was conducted for

the purposes of exploring boundary layer control through
mass flow removal and does not address issues of stabU-

ity bleed. Parametric data consist of bleed region flow

coefficient as a function of Math number, bleed plenum

pressure, and bleed orifice geometry. Seven multiple hole

configurations and two single slot configurations were

tested over a supersonic Math number range of 1.3 to 2.5

[nominal]. Advantages gained by using multiple holes

in a bleed region instead of a single spanwise slot are
discussed and the issue of modelling an entire array of

bleed orifices based on the performance of a single ori-

rice is addressed. Preconditioning the flow approaching

a 90 ° inclined (normal) hole configuration, resulted in a

significant improvement in the performance of the coo-

figuration. The same preconditioning caused only subtle

changes in performance for a 20* inclined (slanted) con-

figuration.

Nomenclam_

A = total bleed area
Ca = ASME nozzle discharge coefficient

d = orifice diameter (width), ASME nozzle
throat diameter

D = diameter of approach pipe upstream of
ASME nozzle

E! = ASME nozzle thermal expansion factor

Hi,e = incompressible shape factor

L = orifice length (depth)
rh = mass-flow rate

M = Math number

P = static pressure

Pt = total pressure

AP = ASME nozzle differential pressure,
P1- P2

Q = sonic flow coefficient

Re = Reynolds number

"Research Engineer, Inlet, Duct, and Nozzle Flow

Physics Branch; Member AIAA

7",

Z,y,Z
Y

6

6"

0

= total temperature

-- cartesian coordinate system

= ASME nozzle expansion ratio

= boundary-layer thickness

= displacement thickness

= momentum thickness

Subscripts

ref =

plenum =
1

2

condition in wind-tunnel plenum

condition at upstream reference plane

condition in the bleed plenum

pipe section upstream of the flow nozzle
pipe section downstream of the flow
nozzle

ObJective

As part of an effort to provide technology tools to

allow for more efficient design of bleed systems in super-

sonic inlets, an experimental investigation was initiated to

explore the fundamental dynamics of bleed mass flow re-
moval as it applies to boundary layer control. The objec-

tive of this effort can be divided into two parts: 1) provide

data that can be used to develop and test global modeling
schemes for bleed regions, and 2) provide parametric data

describing bleed orifice efficiencies for a range of super-

sonic conditions. Part one focuses on contributing to a

long term goal of effectively predicimg the behavior of

bleed regions in inlet systems via computational fluid dy-

namics. Global modeling schemes for bleed regions are
a necessity since including each individual bleed orifice

in the computational domain can be cost prohibitive. Part

two focuses on developing a parametric database for near

term use by inlet aerodynamic designers. As presented

here, the data serves part two of the objective.

Introduction

Background

Renewed interest in a high speed civil transport

has brought along its associated concerns surrounding

the performance of mixed compression supersonic in-

lets. Mixed compression supersonic inlets present two

key challenges to an inlet aerodynamieist First, the shock

wave/bonndary layer interactions inherent in this type

of inlet cause a reduction in performance of the system

via boundary layer separation. Distortions introduced by

such separations, along with 'displacing' the shock wave



pattern,reducetheefficiencyof theinlet. In the limit
this reduction becomes unacceptable. Second, the shock

wave system at its normal shock wave terminus is neu-

trally stable thus making it su_eptible to a phenomenon
know as 'unstart'. During an unstart the inlet operation

transitions from maximum thrust to maximum drag in

milliseconds. Unstarts in the mixed compression inlets

of the SRTI aircraft have resulted in the pilot's helmet

cracking as his head impacts the cockpit canopy due to the
sudden deceleration caused by the event. This phenome-

non is unacceptable for obvious reasons. During the past
two decades of research on mixed compression super-

sonic inlets, aerodynamicists have consistently turned to

the technique of mass flow removal, colloquially referred
to as 'bleed', when addressing these two challenges. The

difference between boundary layer control bleed and sta-

bility bleed begins with the amount of mass flow that
needs to be removed (boundary layer control: percentage

of boundary layer mass flow removed versus stability:

percentage of inlet mass capture flow removed) and con-
tinues to diverge in appfication. The effort discussed in

tim paper focuses on boundary layer control bleed as it
applies to shock wave/boundary layer interactions. Issues

regarding stability bleed are not addressed.

Boundary layer control bleed, when applied in the

region of a reflected oblique shock wave/boundary layer
interaction, controls boundary layer separation by increas-

ing the average kinetic energy of the boundary layer thus

helping it overcome the adverse pressure gradient associ-
ated with the shock wave. The porous surface, or bleed

region, may be a series of discrete orifices or a single

large slot- A large percentage of the data concerning the
effectiveness of this technique was gathered from systems

tests of mixed compression supersonic inlets 1-_ ergo the
effectiveness is defined from a systems point of view.

The work of McLafferty and Ranard _ has stood for years

as the sole investigation into the fundamental behavior

of the mass flow through a porous surface consisting of

discrete holes and most, if not all, of the bleed systems

used in the previously mentioned systems tests were de-
signed based on the data from this work. However, these

bleed systems needed multiple rows of holes in order to

remove enough mass to be effecdve whereas McLafferty

used only two rows for the bulk of his work. The work

discussed herein begins to extend McLafferty's efforts
into the arena of realistic bleed systems by estabfishing

baseline performance data for several configurations of

multiple rows of holes (or single spanwise slots).

Boundary Layer Control Bleed

Boundary layer control bleed uses a suction pres-

sure differential across a porous surface, or bleed re-

gion, to draw off the low momentum fluid associated with

the boundary layer. The basic objective is to 'improve'

the boundary layer, i.e. increase its average kinetic en-

ergy, making it less susceptible to separation caused by

I_l oanm9

P._

Fig. 1 Bleed experiment schematic.

the presence of an adverse pressure gradient- A typi-

cal bleed experiment, see Fig. 1, has a number of fea-

tures that can be divided into aerodynamic and geometric

subsets. Aerodynamic features are the free stream con-

ditions, approach boundary layer characteristics, and the

suction pressure differential. Geometric features are ori-

rice size, orifice shape, orifice spacing or porosity, and

bleed plenum size. Scaling of the orifice size to the ap-

proaching boundary layer characteristic offers yet another

parametric dimension. Table 1 provides a compilation of
the variables associated with these three subsets. The

geometric variables are schematically defined in the sec-

tion on Bleed Configuration Hardware. An experimen-

Aerodynamic Variables
i .

PLo freesCeam total lxessme

P0 freestream static press_, ,,

M Mach number

suctkm pcessure differential

health of the bocnda_ layer

L/d

ii

g

N

r/d

A/A'

orifice shape

wT_

6/d

6*ld

Old

Geometric Variables

orifice diameter

orifice aspect ratio

inclination angle of orifice axis

NACA flush inlet inclination angle

number of rows of orifices

edge t-alim ratio

entrance mea to exit area ratio

rotmcL square, louvre ......

sc_ Factors

scaling to boundary layer ffticimess

scaling to the displacement thickness

s4:alingto the moraennnnO_:kne_

* shadedrow representp(m_i_yvariables

Table 1 Available variables for

a typical bleed experiment.



tal matrix designed to cover all the variables described in
Table 1 is not feasible. The present investigation covers

a very small portion of these parameters.

Evaluation of a bleed configuration is determined by

how efficiently it removes the low momentum fluid asso-

ciated with the boundary layer. This efficiency at remov-

ing mass from the boundary-layer is typically quantified

by the sonic flow coefficient defined as follows:

rh
Q = (I)

_deal,¢hoked

where theater,chorea is the choked flow through the total

bleed area for a discharge coefficient of 1.0. The follow-

ing equation is used to compute this reference value:

0.5318Pt_ A (2)
ff_aeal,ehoke_=

Defining the efficiency of the bleed configuration in this
manner allows an inlet designer to determine the amount

of open area required to remove a given amount of mass
(usually 'given' as a percentage of the boundary layer

mass flow rate). Such activity has an associated systems
cost which is embodied in a bleed drag coefficient and

is directly related to the bleed plenum pressure. Show-

ing the sonic flow coefficient, Q, as' a function of the

bleed plenum static pressure, Ppknum, normalized by the
freestream total pressure, Pt, provides a bleed mass flow

recovery curve analogous to a supersonic inlet mass flow

recovery curve (with which inlet designers are familiar).

Figure 2 represents a generic set of recovery curves. In

keeping with this analogy the various regions of the bleed
mass flow recovery curves will he referred to as subcrit-

ical, critical or choked, and supercritical throughout the
discussion of results. Plotting the data in this fashion

provides a quick look at the pressure recovery, i.e. pres-
sure loss,thatwillbe incurredfrom operatingthebleed

configurationata particularsonicflow coefficient.

Q

M

superctifr_ / o_-_l_

epeta_ / /o'.

/
s ' subcf_cal

\ I

_plenum/_

Fig. 2 Generic set of bleed mass flow recovery curves

Experimental Program

Wind Tunnel Installation

The experiments were performed in the NASA Lewis
Research Center IXl ft. Supersonic Wind Tunnel (SWT)

which is a continuous-flow facility with Mach num-

her variation provided by replaceable nozzle blocks. A
schematic of the IXl SWT experiment is shown in

Fig. 3a. The approach boundary-layer is the naturally

occurring boundary-layer on the wind tunnel wall. The

bleed region is contained in an interchangeable sidewall
insert which is flush mounted with the test section side-

wall surface. Figure 3b provides a plan view of the in-

stallation. Boundary layer fences were used to isolate the
wind tunnel test section corner flow thereby establishing

a quasi-two dimensional flow field over the bleed region.

Bleed mass flow exhausts into a large plenum where

plenum static pressure, P_m, was measured. ASME un-
choked nozzles were used to measure the bleed mass flow

rate which was controlled by a choked mass flow plug

arrangement.Comxollingthemass flow rateis analogous

to controlling the bleed plenum pressure. A suction pres-
sure differential across the bleed region was supplied by

a 450 psi air ejector dumping into the lab-wide altitude
exhaust system. Maintaining a pressure ratioacross the

mass flow plug of approximately 0.4 or less provided a

i i

a) General arrangement.

-- 1S.24 cm-_

5o .--I FENCES

_//_._////////////////////_ _///////2

b) Plan view of slot instafiadon.

Fig. 3 Flow coefficient behavior

experiment wind-tunnel installation.



Table2 1 ft. by 1ft. supersonic
wind-tunneloperatingeondition_

Mrel

1.27 1.58 1.98 2.46

Pt,0 kPa 89.6 103.4 137.9 172.4

P0 kPa 33.7 25.0 18.2 10.7
I

Tt,0°K 293.0 293.0 293.0 293.0
i

Re x 10 -7 1.35 1.34 1.77 1.75
/m

6_! cm 2.24 2.10 2.44 2.63

6_e! cm 0.393 0.436 , 0.567 0.717

Ore/ cm 0.209 0.192 0.202 0.198

H_,c 1.259 1.275 1.262 1.26

CI.,., ! x 10a 2.07 1.69 1.50 1.29

fine control over the bleed plenum pressure via a choked

area effect at the mass flow plug location. This choking

action also isolated the bleed plenum/mass flow measure-

merit system from any fluctuations in the lab-wide altitude
exhaust system. These fluctuations could be as much as

0.689 kPa in magnitude enough to overwhelm the dif-

ferential pressure reading of the ASME nozzles at low
bleed flow rates. With tunnel conditions being held con-

stant, a typical bleed configuration evaluation consisted

of a mass flow plug sweep containing approximately 20

stops. The resulting bleed mass flow recovery curves,
from zero mass flow to choked flow, for nine different

bleed configurations are the subject of this paper.

Data were obtained for four wind-tunnel operat-

ing conditions. These conditions are referred to by the
wind-tunnel core Mach number measured in the upstream

referenceplane. Table 2 summarizes the wind-tunnel

plenum condition and the boundary-layer characteristics
measured in the reference plane for each of the refer-
ence Mach numbers. The unit Reynolds number reported

in this table is based on the plenum conditions and the

reference plane core Mach number (M, el).

Instrumentation and Uncertainty

The critical insU-umentation and its associated un-

certainty are the pressure transducers used in conjunction
with the ASME uncboked nozzles to measure the bleed

mass flow rate. Figure 4 provides a schematic of this

measurement system and its instrumentation. Two delta

_---_P" P, P2 '

D d
L

,

i

I
i

Fig. 4 Diagram of the ASME unchoked
nozzle flow measurement system

showing location of pipe pressure taps.

pressure transducers and one absolute pressure transducer
were used to record the pressure differential across the

nozzle, (PI-P2), and the total pressure upstream of the

nozzle, Pl, respectively. Low tunnel static pressures, Po,
that exist at the test conditions result in a bleed plenum

pressure range P0 >__P1 _> 0.3Po.Four thermocouples
were used to provide an average temperature of the flow
downstream of the ASME nozzle. Implementation of this

instrumentation follows the guidelines established by the

ASME s. The accuracy and resolution of the transducers
follows as:

P1 AP

accurracy :L15% of rdg. +15% of rdg.

resolution .-L5x 10 .3 tort +1.75 x 10 "x tort

For the equation used to calculate the bleed mass

flOW rate,

C'_EIYd2 • _ Ibm�see (3)

= 0.86253 - V

a "practicalworking formula" forcalculatingitsuncer-

tainty,_, is given in ASME MFC-3M-19859. The for-
mula states that only the following uncertainties are to be

included: Cd, Y, D, d2, Ap, and Pl. Using the values

given by the ASME standard 9 for Cd, Y, D, and d2 in

conjunction with the pressure ranges experienced in the

system yields the results shown in Table 3. Table 3 pro-

vides ranges for the values of Pi and Ap which bracket

the operating conditions of the system: near zero flow to
maximum flow'.

Carrying the uncertainty analysis through to the

sonic flow coeiiicient (see eq. 2) and its subsequent

display as a function of the ratio of the bleed plenum

" It is interesting to note that the given ASME

standard 9 uncertainty value for q, 6Cd/C_ = 0.02, is
the dominant function determining the uncertainty of the

mass flow measurement for this system.



Mach Number

1.27 1.58 1.98 2.46

where the accuracy of Pplenem and Pt are 0.007 psi and

0.045 psi respectively.

pt range
5.0 - 1.7 4.0 - 1.2 2.6 - 0.8 1.6 - 0.4

(pstl)

Ap 0.005 -
0.005 - 0.3 0.005 - 0.1 0.005 - 0.1

range 0.4
Lesh)

6p/p .0015 .0015 .0015 .0015

6Ap/Ap .0015 .0015 .0015 .0015

61ia .0220- .0220-.----- .0220-.0218 .0220-.0218
m .0218 .0218

Table 3 Uncertainty values of the bleed

mass flow rate over the range of operating

conditions experienced throughout the test.

pressure, Ppleaam, to the tunnel total pressure, Pra, results

in the following uncertainty values:

_mideal,¢hoted --. [0.0091] mazimum@ M = 1.27

1Tlideal,choked (4)

6P,,.---
Pt

P,

-- [0.0241] mazimum (5)
0

- [0.0061, 0.0065, 0.0093, 0.0176]

for Mach= 1.27,1.58,1.98,2.46

(6)

Bleed Configuration Hardware

Nine bleed configurations, labeled C I through C9,

were tested at the conditions listed in Table 2. The con-

figurations tested were designed to meet various goals

and by no means are they representative of a definitive

set. Configurations CI through C5 are considered stan-

dard configurations because the associated orificeshapes

are commonly used for bleed regions in inlet systems.

Table 4 provides a list of the geometric characteristics of

these standard configurations.

Configurations C6 through CO are considered non-

standard because of the appfication of flow field precon-

ditioning upstream of the orifice entrance. This precon-

ditioning is achieved by merging a NACA flush inled °

geometry with a standard hole geometry. Flow is

into the bleed orifice by the vortical activity associated

with the fluid dynamics of the flush inlet. Since the flow

is supersonic, the flush inlet provides a small amount of

flow turning via an expansion wave thus directing flow

into the orifice. The local speeding up of the flow creates

a pressure gradient across the streamwise edge of the flush

inlet which also induces flow into the orifice. Configura-

tion C9 is a NACA flush inlet backed by a diffusing chan-

nel, in essence turning the entire orifice into a small inlet

systen_ Table 5 provides a list of the geometric charac-

teristics of these nonstandard configurations. RecalLing

the tunnel reference conditions, the aerodynamic scaling

of orifice diameter, d, to the boundary layer characteristic

6" is on the order of one. Porosity for the multiple row

configurations is considered constant except for CO.

A

Table 4

L/d

Cl

0.635

1.0

C2

0.635

0.0

1.0

Y/d 2.0

Y'Id 1.0 LO

X/d 2.0 2.0

a 90* 90*

N 6 6

MA' 1.0 !.4

r/d 0.0

23.75Y_A

2.0

23.75

C3 C4

0.635 1.00

2.92 2.54

C5

1.00

7.42

2.0

1.0

2.78

20* 90* 20*

6 I !

1.0 1.0 1.0

0.0 100 0.0

16.3023.75

Geometric characteristics of standard bleed orifice configurations: C1 through C5.

16.30

5



L/d

L'/d

Y/d

C6

0.635

2.0

2.6

2.0

C7

0.635

3.11

2.6

CS

0.635

5.s4
2.6

7.O 2.0

C9

1.01

5.0

7 °

Y'/d 1.0 1.0 1.0

X/d 2.0 2.0 2+78 4.0

a 90° 40_ 20" 21"

B 7" 7°

2.5

2.O

1.0

7 °

3N 6 6 5

A/A' 1.0 1.0 1.0 2.0

0.0 0.0 0.0 0.0r/d

7.4223.75 23.75 19.79
i i

Table S Geometric characteristics of nonstandard bleed orifice configurations:

Results and Discussion

Sonic Flow Coefficient

Sonic flow coePficient distributions were measured

for the case of an undistorted approach boundary-layer
for each of the reference Mach numbers in Table 2 for

the nine bleed configurations previously described. These
distributions are shown in Figures 5 through 13. Two
different sca)es are used for these plots because of the
dramatic difference between the performance of 90° in-
clJned (normal) configurations and the 20o incfined con-

fi_fions. H gums 14 through 26 display some unique
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comparisons of these nine configurations.

Configuration C4 was the first configuration tested
and two ASME nozzles weze used to test the nozzle sizing

technique applied to provided the best _urement range
each confguradon. Nozzle sizing for each configuration
was based on the data of McLafferty and Ranard 7 keeping
in mind that the nozzle Mach number should not exceed

0.7. The open and closed symbols in figure 8 represent
data measured with these two different diameter ASME

nozzles. The solid symbols represent a nozzle with a
diameter of 6.096 cm and the open symbols represent
a nozzle with a diameter of 8.225 cm. The switch to

the larger nozzle was made at the lower Mach numbers
because the relatively large bleed mass flow associated
with these conditions caused the Mach number of the
smaller nozzle to exceed 0.8. This data highlights the

compressibility effects on the ASME nozzle mass flow
measurement system. A conected flow rate technique
was used to check the nozzle Mach number for each

configuration at its maximum flow rate to insure that an

appropriate nozzle size was being used.
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Fig. 5 Sonic flow coefficient distributions: C1
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Fig. 6 Sonic flow coefficient distributions: C2
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General trends will be discussed using Figure 14 as

a reference. This figure provides a look at the effect of
inclination angle, a, on a circular orifice configurafon.
The 20e inclined hole configuration, C3, has a maximum
sonic flow coefficient approximately three times that of
the 900 inclined hole configuration, C 1. This holds across
the entire Mach number range. Configurations with a 20*

inclination angle (C3, C5, C8, C'9) display a maximum
Q of approximately 0.6 whereas the maximum Q for
the analogous 90° inclination angle configurations (C1,
C2, C4,) is approximately 0.2. The 20° configurations
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Fig. 13 Sonic flow coefficient distributions: C9

are able to capture a significantly larger fraction of the
total pressure associated with the boundary layer than
the 90° configurations due to a ram effect produced by
the alignment of the orifice with the boundary layer
flow. For any given bleed orifice the flow expands

past the leading edge thus providing a measure of flow
turning into the orifice. A 900 configuration immediately
separates causing a reduction in the effective area of
the bleed passage and suffers even more losses because
of the tremendous amount of flow turning required to

negotiate the bleed passage. A 20° configuration presents
less separation and more importantly greatly reduces the
amount of losses incurred due to flow taming. It stands

to reason that the turning losses experienced by the bleed
mass flow vary proportionally with the inclination angle.
This effect can been seen in the data of McLafferty and
Ranard_ where the recovery curve for a 20_ inclined
configuration subjected to Mach 0.0 (a true orifice test)
exhibits a lower maximum sonic flow coefficient than

for approach Mach numbers of 0.5 and 0.7. This trend
was also observed by Davis, I-Iingst, and Bodnar_1while

investigating single orifice flow coefficient behavior over
a Mach number range of 0.0 to 2.0 (nominal).

In general the data in these plots agree with the
data of McLafferty and Ranard_ even though the mul-

tiple hole configurations (with the exception of C9) in-
vestigated during this test contain 5 to 6 times as many
bleed orifices. From a practical standl_int, 20° inclined

configurations give very little control over the amount of
mass flow removed (see solid symbols, Fig 14). Dur-

ing subcritical operation small changes in plenum pres-
sure create large changes in the sonic flow coefficient.
Moving to critical or supercritical operation completely
reverses the situation and creates an inflexible system. If

the removal of varying precise amounts of boundary layer
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affect of inclination angle of the bleed orifice.

mass flow is required, a 900 inclined configuration pro-
rides more resolution when controlling the bleed system

via bleed plenum pressure.
The effect of diffusion within the bleed orifice can

he seen in Figure 16. Configuration C2 is identical to
C1 with the exception of an inlet to exit area ratio, A'/A,
permutation: C2 has an area ratio of 1.4. The noticeable
difference occurs in the critical/supercritical region of the
recovery curve. It is offered that the diffusing geometry
requires less turning at the downstream edge of the hole
because it is inclined with the flow direction. Conse-

quently the diffusion offers a small increase in pressure
recovery for a given amount of bleed mass flow. Since
the flow separates off the leading edge of the bleed od-
rice, the area diffusion in the forward portion of the hole

does not provide any improvement in performance. These
ideas are illustrated in the Figure 15 below. Overall the

performance gains brought about by diffusing a normal
hole are very slight.

Figures 18 and 19 begin to illuminate the importance
of the su'eamwise edges of a bleed orifice. Configuration

C l, multiple holes, has better perforniance than C4, a

single rectangular slot, see Fig.18. The slreamwise edges

of C4 can he boiled down to one circularhole (thesemi-

circular ends of the slot)with a diameter of 1.0 cm. CI

is made up of 75 holes with a diameter of 0.635 cm; ap-

proximately 47 times the amount of s_eamwise edges of

Fig. 15 Illustration of the effect
of area diffusion on bleed flow.
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Fig. 16 Sonic flow coefficient distributions:
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affect of diffusing the bleed orifice.
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C4. The streamwise edges develop a pressure gradient

that promotes flow into the bleed orifice. Figure 17 illus-
tratesasemi-infinteslotcomparedtothreeholes.As the
flow meets the forward most section of the hole a small

expansion occurs at this discontinuity. This expansion
creates a lower local static pressure, Po, in the immediate
vicinity of the hole leading edge while the flow adja-
cent to the leading edge maintains its original (higher)
static pressure, P. Consequently a pressure gradient de-
velops across the flow surface which induces flow into
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Fig. 17 Relative amount of streamwise edges:
a single slot compared to multiple holes.



theorifice.A largesingleslotonlyhasthistypeofac-
tivityoccurringatitsends.In keeping with this idea, the
data show that the streamwise edge effects decrease as
the Math number increases. For Maeh 2.46 it becomes
nonexistent. As the Math number increases the rate at

which any local activity (such as the flow induced by the
pressure gradient) is convected downsa-eam also increases
thereby reducing the positive effects of the local activity.

Another issue to keep in mind is the relative mag-
nitude of the pressure forces acting on the bleed orifice
over the Mach number range. Separating any analysis of
local disturbances such as the aforementioned pressure

gradient is not possible when plotting the data in this
fashion. It seems unlikely that pressure magnitude alone
accounts for the differences in the performance of these

configurations at the lower Mach numbers.

Figure 19 provides a comparison of C3, multiple 200
inclined holes, with C5, a single 200 inclined rectangular
slot. For this analysis the relative amount of streamwise
edges remains the same as for the previous case. Flow
induced by the streamwise edges does not appear to have
any effect. The relative amount of flow produced by
the streamwise edges is small compared to that produced
by the ram effect experienced by inclined configurations.
The divergence of the recovery curves during critical
and supefcritical operation for a given Mach number is
probably due to each successive row of holes 'seeing' a
higher average pressure due to the bleeding activity of its
predecessor. A large discrepancy between the L/d values
of the two configurations could also account for these
differences.
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Fig. lS Sonic flow coefficient distn'butions:
CI (solid symbols) vs. CA (open symbols);

multiple holes versus a single slot.
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Fig. 19 Sonic flow coefficient distributions:
C3 (solid symbols) vs. C5 (open symbols);

multiple holes versus a single slot.

Small changes in Reynolds number (brought about
by varying the tunnel total pressure) have no effect
on the sonic flow coefficient at Mach 1.3. Figure 20
shows recovery curves for three different Reynold's num-
bers. Some variation is evident but taking into account
that_Q/Q _, 0.0241 this variation falls within the error
band of these curves.

Comparison of a bleed region consisting of multiple
orifices to a single similar orifice has been made utiliz-
ing the data of Davis, Hingst, and Bodnar II. Figure 21

0.3 ' ' ' " ' ' ' ' '
o Relm = 2.46e7

13 Re/111 = 1.90 e7

Re/m = 1.3,5 e7

0.2

0.1

0.0 , ,
0.00

%
ll)

\,
0

• l I I i I l i I l ' l [ ' l •

0.10 0.20 0.30

Ppla.um/Pt

Fig. 20 Sonic flow coefficient distributions:
C1; effect of Reynolds Number.
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displays the sonic flow coefficient distributions of config-

uration C 1 plotted against those of a 900 single hole with
an L/d of 2.0. Using the Mach 2.0 data from each config-

uration shows that the multiple holes have slightly better

performance than the single hole as indicated by a differ-

ent slope in the subcritical portion of the recovery curve

and a higher maximum sonic flow coefficient. Given the

spacing of the holes in C 1 it would seem that gross mu-
tual interaction effects exist, not that local disturbances

from one hole influence another hole but rather each suc-

cessive row of holes is subjected to a different flow field.

With this in mind the increased performance of C 1 could

be accounted for by realizing that each successive row of

holes pulls off mass flow at an incremental increase in lo-

cal pressure. Over the combined Mach number range the
disuibutions of both configurations are similar in shape.

Despite this sfight increase in the relative performance
of the two configurations, the maximum values of Q (as
a function of Mach number) are monotonically ordered

suggesting an order of magnitude similarity their in per-
formance.

Comparison of the 200 inclined multiple configura-

tion, C3, with a single 20 ° inclined hole strengthens the

conjecture on the mutual interaction phenomenon dis-
cussed above. Figure 22 displays the sonic flow coef-

ficient distributions of configuration C3 plotted against
those of a 20 ° inclined single hole with a IJd of 2.01L

As with the previous analysis the sonic flow coefficient

distributions are similar in shape over the Mach number

range which implies similar operating characteristics for
a single orifice. However, there is a much more dra-
matic increase in maximum performance of the multiple

hole configuration over the single hole configuration at
the Mach 2.0 operating condition. This is to be expected

as a 20 ° incfined orifice operates with a ram effect and
each successive row acts upon a significantly different

flow field (relative to a 90 ° inclined orifice configura-

tion). Note that the maximum Q for C3 at Mach 1.58

is approximately equal to the maximum Q for the single

hole configuration at Mach 1.44. For this particular com-

parison the similarity in performance is not as strong as
for the 900 inclined case.

The most significant result of this effort is displayed

in Figure 23. This figure highlights the effect of precon-

ditioning the approach flow for 90 ° inclined orifices by

merging a NACA flush inlet with the upstream edge of
the hole. Performance increased by approximately fifty

percent across the Mach number range. The performance
gained by this preconditioning is due to a combination

of flow turning and a pressure gradient acting across the

streamwise edges of the flush inlet. The flash inlet in-
creases the amount of streamwise edges that each bleed

hole can present to the approach flow, see Fig. 24. In this
illustration the streamwise edges are the relatively thicker

lines of the hole geometry. Figure 25 displays the ef-

fect of preconditioning (identical to the previous case)
the approach flow for 200 inclined orifices. The data
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Fig. 21 Sonic flow coefficient distributions:

C1-Multiple holes (open symbols) vs. single hole
(solid symbol); gross mutual interaction effects.

here reinforces the idea that the gains in performance are

a combination of flow mining and local pressure gradi-

ent activity. For the 20 ° inclined orifices the maximum

performance is not affected. The amount of flow into the
orifice attributed to the local activity created by the flush

inlet is a relatively small percentage of the total mass

flow of a given orifice which is dominated by the ram ef-

fect discussed previously. There does appear to be some
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Fig. 23 Sonic flow coefficient distn_tmtions: C1
(solid symbols) vs. C6 (open symbols); effect of

preconditioning the approach flow for 900 holes.

gains in the subcrifical portion of the recovery curves. At
these operating conditions the amountof flow increase at-
tributed to the flush inlet is a contributing percentage of
the mass flow through the bleed orifice.

Comparison of a preconditioned 20 ° inclined hole
with a preconditioned 200 diffusing channel is shown in
figure 26. A decrease in maximum performance occurs at
the low Mach numbers. The sensitivity to bleed plenum
pressure during subcritical operation is even more pro-
nounced for the diffusing channels than for the holes.
Likewise, the insensitivity to plenum pressure during crit-

ical/supercritical operation is more pronounced for the
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Fig. 25 Sonic flow coefficient distn'butions: C3
(solid symbols) vs. C8 (open symbols); effect of

preconditioning the approach flow for 20 ° holes.

diffusing channels. This insensitivity may be a function

of the gross mutual interaction occurring between rows

of orifices. There are twice as many rows for the pre-
conditioned 20 ° inclined hole configuration as there are

for the diffusing channel configuration. The same type

of dramatic discontinuity in sensitivity to bleed plenum

pressure is exhibited by C5, a single 20 ° inclined slot.
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Fig. 24 Relative amount of streamwise edges over
which a flow inducing presmre gradient can act:

preconditioned 90° bole versus • standard 90° hole.

Fig. 26 Sonic flow coefficient distributions: C8 (mild
symbols) vs. C9 (open symbols); comparison of a

slanted hole versus a slanted diffusing channeL
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To reiterate, this type of plot is developed with an in-

let aerodynarnicist in mind. If global modeling is the de-

sired goal then the approach by Dittrich and Graves t2"13

or Rhode _4 is more appropriate. Their approach involves

defining the bleed orifice efficiency in terms of an ideal

jet flow then showing it as a function of the suction pres-
sure differential across the orifice. This makes sense be-

cause the flow through a bleed orifice is a pressure driven

phenomenon. This method begins to collapse the family

of curves generated by the method used in this report

into a single curve making the data more conducive to

modeling.

Concluding Remarks

The following statements are put forth based on

experience gained during this investigation:

1. Extrapolating the performance of a single bleed ori-

rice to the perfornlance of a bleed region consist-

ing of multiple similar orifices provides a general
estimate of that performance. The strength of this

estimate is inversely proportional to the amount of

gross mutual interaction effects occurring within the

bleed region.
2. Area diffusion of a 90 ° inclined hole does not

provide significant improvements in performance.
This may not be true for bleed orifices which are

more closely aligned with the incoming flow. The

higher pressures associated with the ram effect of the

aligned geometry may benefit from area diffusion.
3. Small changes in Reynold's number do not affect the

performance of 90 ° inclined hole with an L/d of 1.0.
4. The increased efficiency of a multiple 90 o inclined

hole bleed region relative to a single large slot can
be attributed to the increased amount of streamwise

edges associated with the holes. Streamwise edges
create a local flow field around the orifice which es-

tabfishes a pressure gradient into the orifice. Slanted
holes versus a slanted slot do not exhibit the same

dramatic increase in efficiency because the ram ef-

fect due to alignment with the approach flow is the

primary mechanism driving the bleed mass flow.

5. Merging a NACA flush inlet with a 90 ° inclined hole
increases the efficiency of the configuration by 50%

across the Mach number range tested. Improvements

to a 20 ° inclined hole configuration are much more

subtle; again owing to the dominance of the ram

effect created by this geometry.

It is important to keep in mind that the comparisons made

here involve configurations that at best have a constant

inclination angle. Only the comparison of configurations
C I and C2 have a constant L/d ratio. Current work in

this area suggests that the L/d ratio has an effect on the

fundamental flow physics of the bleed orifice. As stated

cartier this investigation merely 'scratched the surface' of

the available permutations and is by no means a definitive

study of any particular effect.
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